Large sample distribution of the sample total in a generalized rejective sampling scheme

S. Rao Jammalamadaka, G. Michaletzky * and P. Todorovic

Statistics and Applied Probability Program, University of California, Santa Barbara, CA 93106, USA

Received March 1990

Abstract: The weak convergence of a sample sum, in a generalized rejective sampling from a finite population, to a Poisson and Normal distribution is discussed. The generalization consists in assuming that the elements of the population are random variables, rather than fixed values.

1. Introduction

Consider a finite population of N units, $\{Y_j\}_1^N$, where the value of the *j*th unit, Y_j , is a non-negative integer. From this, a sample of size *n* is drawn according to a rejective sampling plan with parameters p_1, \ldots, p_N , with $\sum_{i=1}^{N} p_j = n$ (see Hajek, 1981, Chapter 7). Here p_j denotes the probability that the *j*th population unit is included in the sample — this event being represented by the indicator variable, I_j . Let S_{N_n} be the sample sum, then clearly $\mathscr{L}\{S_{N_n}\} = \mathscr{L}\{\sum_{i=1}^{N} Y_j I_j | \sum_{i=1}^{N} I_j = n\}$, where $\{I_j\}_{i=1}^{N}$ is a sequence of independent Bernoulli r.v.'s with $E\{I_j\} = p_j$.

In a recent paper (Praskova, 1985) the weak convergence of S_{N_n} to a Poisson r.v. as $N, n \to \infty$, was discussed in some detail. In this note, we extend and generalize the results of Praskova (1985). First, we show that the Poisson convergence still holds when $\{Y_j\}_1^N$ are non-negative independent integer valued random variables (r.v.'s), independent of $\{I_j\}_1^N$, such that $E\{Y_j\}^k < \infty, k = 1, 2$. The randomness of Y_j covers cases such as multistage sampling where Y_j is the value corresponding to the *j*th primary stage unit. Second, under mild regularity assumptions on $\{Y_j\}_1^N$, we also investigate the weak convergence of the standardized sample sum to a normal distribution.

2. Poisson convergence of the sample sum

Set $P_{N_n} = P\{\sum_{i=1}^{N} I_i = n\}, f_i(t) = E\{e^{itY_i}\}$ and

$$\varphi_{N_n}(t) = E\left(\exp\left\{it\sum_{j=1}^{N}Y_jI_j\right\}\right|\sum_{j=1}^{N}I_j = n\right).$$

From a simple argument (see e.g. Holst, 1979, Theorem 1) we have:

$$\varphi_{N_n}(t) = (2\pi P_{N_n})^{-1} \int_{-\pi}^{\pi} e^{-isn} \left[\prod_{j=1}^{N} E(\exp\{i(tY_j + s)I_j\}) \right] ds.$$
(2.1)

* Permanent Address: Department of Mathematics, Eötvös University, Budapest, Hungary.

0167-7152/91/\$03.50 © 1991 - Elsevier Science Publishers B.V. (North-Holland)

Let Z_N be a Poisson r.v. with $E\{Z_N\} = \sum_{i=1}^{N} E(Y_i) p_i$, then its characteristic function $g_N(t)$ is

$$g_N(t) = \exp\left\{ (e^{it} - 1) \sum_{j=1}^{N} p_j E(Y_j) \right\}.$$
 (2.2)

Our aim is to evaluate $|\varphi_{N_m}(t) - g_N(t)|$, which we do in Proposition 2.1. Throughout this paper, we assume that $p_j < 0.5$. Set $q_j = 1 - p_j$, then

$$E\left(\exp\left\{i\left(tY_{j}+s\right)I_{j}\right\}\right)=\left(q_{j}+p_{j}\,\operatorname{e}^{\mathrm{i}s}f_{j}(t)\right).$$
(2.3)

This and (2.1) yield

$$\varphi_{N_n}(t) = (2\pi P_{N_n})^{-1} \int_{-\pi}^{\pi} e^{-isn} \left[\prod_{j=1}^{N} (q_j + p_j e^{is}) (q_j(s) + p_j(s)f_j(t)) \right] ds$$
(2.4)

where $q_j(s) = q_j/(q_j + p_j e^{is})$ and $p_j(s) = 1 - q_j(s)$. Since

$$1 = \left(2\pi P_{N_n}\right)^{-1} \int_{-\pi}^{\pi} e^{-isn} E\left(\exp\left\{is\sum_{j=1}^{N} I_j\right\}\right) ds$$

it follows, using a well known identity for products, that

$$\begin{split} \varphi_{N_n}(t) - g_N(t) &= \left(2\pi P_{N_n}\right)^{-1} \int_{-\pi}^{\pi} e^{-isn} \prod_{1}^{N} \left(q_j + p_j e^{is}\right) \\ &\times \left\{ \prod_{1}^{N} \left(q_j(s) + p_j(s)f_j(t)\right) - \prod_{1}^{N} e^{p_j(e^{it}-1)E(Y_j)} \right\} ds \\ &= \left(2\pi P_{N_n}\right)^{-1} \int_{-\pi}^{\pi} e^{-isn} \prod_{1}^{N} \left(q_j + p_j e^{is}\right) \\ &\times \left\{ \sum_{j=1}^{N} \left[\prod_{l=1}^{j-1} \left(q_l(s) + p_l(s)f_l(t)\right) \right] \left[\prod_{k=j+1}^{N} e^{p_k(e^{it}-1)E(Y_k)} \right] \\ &\times \left[q_j(s) + p_j(s)f_j(t) - e^{p_j(e^{it}-1)E(Y_j)} \right] \right\} ds. \quad (2.5) \end{split}$$

To evaluate the absolute value of the difference in (2.5), the following lemma is needed.

Lemma 2.1.

$$\left| q_{j}(s) + p_{j}(s)f_{j}(t) - e^{p_{j}(e^{it} - 1)E(Y_{j})} \right| \\ \leq |e^{it} - 1|^{2} \left[\frac{p_{j}EY_{j}(Y_{j} - 1)}{2(q_{j} - p_{j})} + \frac{2p_{j}q_{j}|\sin\frac{1}{2}s|E(Y_{j})}{(q_{j} - p_{j})|e^{it} - 1|} + \frac{1}{2} (p_{j}E(Y_{j}))^{2} \right].$$

$$(2.6)$$

Proof. First, write the left hand side of (2.6) as follows:

$$\left| p_{j}(s) \left[f_{j}(t) - 1 - E(Y_{j})(e^{it} - 1) \right] + \left(p_{j}(s) - p_{j} \right) (e^{it} - 1) E(Y_{j}) - \left(e^{p_{j}(e^{it} - 1)E(Y_{j})} - 1 - p_{j}(e^{it} - 1)E(Y_{j}) \right) \right|.$$

$$(2.7)$$

Clearly,

$$|p_{j}(s)| \leq \frac{p_{j}}{q_{j} - p_{j}}, \qquad |p_{j}(s) - p_{j}| \leq \frac{2p_{j}q_{j}}{q_{j} - p_{j}} |\sin \frac{1}{2}s|,$$

$$|f_{j}(t) - 1 - E(Y_{j})(e^{it} - 1)| = \left| \sum_{k=0}^{\infty} e^{ikt}P\{Y_{j} = k\} - 1 - (e^{it} - 1)\sum_{k=0}^{\infty} kP\{Y_{j} = k\} \right|$$

$$\leq |e^{it} - 1|\sum_{k=0}^{\infty} \left| \left[\frac{e^{ikt} - 1}{e^{it} - 1} - k \right] \right| P\{Y_{j} = k\}$$

$$\leq \frac{1}{2} |e^{it} - 1|^{2}EY_{j}(Y_{j} - 1).$$

Finally,

$$\left| e^{p_j(e^{it}-1)E(Y_j)} - 1 - p_j(e^{it}-1)E(Y_j) \right| \leq \frac{1}{2} |e^{it}-1|^2 (p_j E(Y_j))^2.$$

This proves the lemma. \Box

Set

$$A = \sum_{1}^{N} \frac{p_{j}E(Y_{j})}{q_{j} - p_{j}}, \qquad B = \sum_{1}^{N} \left[\frac{p_{j}EY_{j}(Y_{j} - 1)}{q_{j} - p_{j}} + (p_{j}E(Y_{j}))^{2} \right],$$
$$C = \sum_{1}^{N} \frac{p_{j}q_{j}}{q_{j} - p_{j}}E\{Y_{j}\}, \qquad d = \sum_{1}^{N} p_{j}q_{j}.$$

Then we have:

Proposition 2.1.

$$\left|\varphi_{N_{n}}(t) - g_{N}(t)\right| \leq \alpha \, e^{|e^{it} - 1|A} \cdot \left\{\beta |e^{it} - 1|B + \gamma |e^{it} - 1|d^{-1/2}C\right\}$$
(2.8)

where α , β and γ are positive constants.

Proof. First, we have the following three inequalities:

(i)
$$|q_{l}(s) + p_{l}(s)f_{l}(t)| = |1 + (f_{l}(t) - 1)p_{l}(s)|$$

 $\leq 1 + |e^{it} - 1|p_{l}(s)E(Y_{l})| \leq \exp\{p_{l}E(Y_{l})|e^{it} - 1|/(q_{l} - p_{l})\}.$
(ii) $|e^{p_{k}(e^{it} - 1)E(Y_{k})}| \leq e^{p_{k}|e^{it} - 1|E(Y_{k})/(q_{k} - p_{k})}.$

(iii)
$$|q_j + p_j| e^{is} | \leq e^{-2p_j q_j \sin^2(s/2)}.$$

This and (2.5) yield:

$$\left| \varphi_{N_n}(t) - g_N(t) \right| \leq \left(2\pi P_{N_n} \right)^{-1} e^{|e^{it} - 1|A} \int_{-\pi}^{\pi} e^{-2d \sin^2(s/2)} \left[\frac{1}{2} B |e^{it} - 1|^2 + C |e^{it} - 1| |\sin \frac{1}{2} s| \right] ds.$$

Since

$$\int_0^{\pi} e^{-2d \sin^2(s/2)} ds' \le \left[\frac{1}{2}\pi\right]^{3/2} d^{-1/2}, \qquad \int_0^{\pi} e^{-2d \sin^2(s/2)} \sin \frac{1}{2}s \, ds \le (1 - e^{-2d})/d,$$

and $P_{N_n} \ge k \cdot d^{1/2}$, where k > 0 is a constant, the proposition follows. \Box

An important consequence of the proposition is the Poisson convergence of the sample sum, stated formally in Corollary 2.1. Set ($\alpha = \alpha(N)$ is assumed to be a bounded sequence)

$$\alpha^{-1} = \min_{1 \leq j \leq N} (q_j - p_j).$$

Then clearly

$$A \leq \alpha \sum_{1}^{N} p_{j} E\{Y_{j}\},$$

$$B \leq \alpha \sum_{1}^{N} p_{j} EY_{j}(Y_{j}-1) + \max_{1 \leq k \leq N} (p_{k} E(Y_{k})) \sum_{1}^{N} p_{j} E(Y_{j}),$$

$$C \leq \alpha \sum_{1}^{N} p_{j} E\{Y_{j}\}.$$

In addition, since $\sum_{1}^{N} p_{j} = n$ and $p_{j} < 0.5$ it follows that $d \ge 2n$.

Corollary 2.1. If we set $I_j = I_{N_i}$, $p_j = p_{N_j}$, and assume that as $N \to \infty$, $n \to \infty$,

$$\max_{1 \leq j \leq N} p_{N_j} E(Y_j) \to 0, \qquad \sum_{j=1}^{N} p_{N_j} EY_j(Y_j - 1) \to 0$$

and

$$\sum_{1}^{N} p_{N_{j}} E(Y_{j}) \to \lambda,$$

then $\varphi_{N_n}(t) \rightarrow g(t)$, where $g(t) = e^{(e^{it}-1)\lambda}$. This implies that

$$\mathscr{L}\left\{\sum_{1}^{N}Y_{j}I_{Ni}\middle|\sum_{1}^{N}I_{N_{i}}=n\right\}\rightarrow\mathscr{L}(Z)$$

where Z is a Poisson r.v. with $E\{Z\} = \lambda$. \Box

3. Convergence to a normal distribution

The result of this section can be formulated as:

Proposition 3.1. Let $\{Y_j\}_1^\infty$ be independent real-valued r.v.'s such that $E\{Y_j\} = 0$ and $Var\{Y_j\} = 1$, j = 1, $2, \ldots$, independent of $\{I_j\}_1^\infty$. Then

$$S_{N_n}/\sqrt{n} \xrightarrow{\mathscr{L}} Z$$

where $Z \sim N$ (0.1), or equivalently $\Psi_{N_n}(t) \rightarrow \phi(t)$, uniformly where

$$\Psi_{N_n}(t) = E\left(\exp\left\{\frac{\mathrm{i}t}{\sqrt{n}}\sum_{j=1}^{N}Y_jI_j\middle|\sum_{j=1}^{N}I_j=n\right\}\right) \quad and \quad \phi(t) = \mathrm{e}^{-t^{2/2}}$$

Proof. The method of proof is the one used in the previous proposition. Write

$$\Psi_{N_n}(t) = \left(2\pi P_{N_n}\right)^{-1} \int_{-\pi}^{\pi} e^{-isn} \prod_{j=1}^{N} \left(q_j + p_j e^{is} f_j\left(\frac{t}{\sqrt{n}}\right)\right) ds.$$

Then, we have

$$\begin{split} \Psi_{N_n}(t) - \phi(t) &= \left(2\pi P_{N_n}\right)^{-1} \int_{-\pi}^{\pi} e^{-isn} \left[\prod_{1}^{N} \left(q_j + p_j e^{is}\right)\right] \\ &\times \left[\prod_{1}^{N} \left(q_j(s) + p_j(s)f_j\left(\frac{t}{\sqrt{n}}\right)\right) - \prod_{1}^{N} e^{-(t^2/2n)p_j}\right] ds \\ &= \left(2\pi P_{N,n}\right)^{-1} \int_{-\pi}^{\pi} e^{-isn} \left[\prod_{1}^{N} \left(q_j + p_j e^{is}\right)\right] \\ &\times \left\{\sum_{j=1}^{N} \left[\prod_{k=1}^{j-1} \left(q_k(s) + p_k(s)f_k\left(\frac{t}{\sqrt{n}}\right)\right)\right] \left[\prod_{k=j+1}^{N} e^{-(t^2/2n)p_k}\right] \\ &\times \left(q_j(s) + p_j(s)f_j\left(\frac{t}{\sqrt{n}}\right) - e^{-(t^2/2n)p_j}\right)\right\} ds. \end{split}$$

But

$$\begin{aligned} \left| q_{j}(s) + p_{j}(s) f_{j}\left(\frac{t}{\sqrt{n}}\right) - e^{-(t^{2}/2n)p_{j}} \right| \\ &= \left| p_{j}(s) \left(f_{j}\left(\frac{t}{\sqrt{n}}\right) - 1 \right) + (1 - e^{-(t^{2}/2n)p_{j}}) \right| \\ &= \left| p_{j}(s) \left(f_{j}\left(\frac{t}{\sqrt{n}}\right) \right) + (p_{j} - p_{j}(s)) \frac{t^{2}}{2n} + 1 - \frac{t^{2}}{2n}p_{j} - e^{-(t^{2}/2n)p_{j}} \right| \\ &\leq \frac{p_{j}}{q_{j} - p_{j}} o\left(\frac{1}{n}\right) + \frac{2p_{j}q_{j} \left| \sin \frac{1}{2}s \right|}{q_{j} - p_{j}} \frac{t^{2}}{2n} + o\left(\frac{1}{n}\right) \frac{t^{2}}{2}p_{j}, \\ \left| q_{k}(s) + p_{k}(s)f_{k}\left(\frac{t}{\sqrt{n}}\right) \right| = \left| 1 + p_{k}(s) \left(f_{k}\left(\frac{t}{\sqrt{n}}\right) - 1\right) \right| \\ &\leq \exp\left\{ \left| p_{k}(s) \right| \cdot \left| f_{k}\left(\frac{t}{\sqrt{n}}\right) - 1 \right| \right\} \leq \exp\left\{ \frac{p_{k}}{q_{k} - p_{k}} o\left(\frac{t^{2}}{2n}\right) \right\}, \end{aligned}$$

and

$$|q_j + p_j e^{\mathrm{i}s}| \leq \exp\left\{2p_jq_j \sin^2\frac{1}{2}s\right\}.$$

From this, we obtain that

$$\begin{aligned} |\Psi_{N,n}(t) - \phi(t)| &\leq (2\pi P_{N_n})^{-1} \int_{-\pi}^{\pi} e^{-(\sum_{i=1}^{N} q_i p_i) \sin^2(s/2) - (t^2/2n) \sum_{i=1}^{N} (p_k(q_k - p_k)) + o(1)} \\ &\times \left[o(1) + \frac{t^2}{2n} \left(\sum_{i=1}^{N} q_j p_j \right) \sin \frac{1}{2} s + o(1) \right] ds \\ &\leq d^{-1/2} \left[\frac{o(1)}{\sqrt{d}} + \frac{t^2}{2n} \right] = o(1) + \frac{c}{\sqrt{d}} \to 0 \end{aligned}$$

which proves the assertion. \Box

References

Hajek, J. (1981), Sampling from a Finite Population (Dekker, New York).

Holst, L. (1979), Two conditional limit theorems with applications, Ann. Statist. 7, 551-557.

Praskova, Z. (1985), The convergence to the Poisson distribu-

tion in rejective sampling from a finite population, in: W. Grosman, J. Mogyorodi, I. Vincze and W. Wertz, eds., *Proc. 5th Panonian Symp. on Math. Statist., Visegrad Hungary, 1985.*