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Large sample distribution of the sample total
in a generalized rejective sampling scheme
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Abstract: The weak convergence of a sample sum, in a generalized rejective sampling from a finite population, to a Poisson and
Normal distribution is discussed. The generalization consists in assuming that the elements of the population are random variables,
rather than fixed values.

1. Introduction

Consider a finite population of N units, {YJ}'IV , where the value of the jth unit, ¥, is a non-negative
integer. From this, a sample of size n is drawn according to a rejective sampling plan with parameters
Pis---» Py, With Z{ij =n (see Hajek, 1981, Chapter 7). Here p; denotes the probability that the jth
population unit is included in the sample — this event being represented by the indicator variable, 7. Let
Sy be the sample sum, then clearly Z{Sy } = Ly Y. |E =n}, where {[; VY is a sequence of
independent Bernoulli r.v.’s with E {L;}=p;

In a recent paper (Praskova, 1985) the weak convergence of Sy to a Poisson r.v. as N, n — co, was
discussed in some detail. In this note, we extend and generalize the results of Praskova (1985). First, we
show that the Poisson convergence still holds when (Y, }Y are non-negative independent integer valued
random variables (r.v.’s), independent of {/,}}, such that E {Y} < oo, k=1, 2. The randomness of Y,
covers cases such as multistage sampling where Y; is the value corresponding to the jth primary stage umt
Second, under mild regularity assumptions on {Y}l, we also investigate the weak convergence of the
standardized sample sum to a normal distribution.

2. Poisson convergence of the sample sum

Set Py, =P{I{l,=n}, f,(t)=E{e""} and

N N
gy (1) =E exp{itz lej} XI=n
1 1

From a simple argument (see e.g. Holst, 1979, Theorem 1) we have:

””[HE(exp{ (1Y, +s)1 }) ds. (2.1)

j=1

oy (t) = (2‘“PN,,)_1_/

—T
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Let Zy be a Poisson r.v. with E{Zy}=ZXVE (Y;) p;, then its characteristic function gy(¢) is

ax (1) =exp{(en_'1)zij(y,) - (22)

Our aim is to evaluate |gy (#) —gy(?)|, which we do in Proposition 2.1. Throughout this paper, we
assume that p, <0.5. Set g,=1 — p,, then

E(exp{i(1Y,+5)L}) = (¢,+p, /(1)) (2.3)

This and (2.1) yield

ow(t) = (2n2y) " [ e*“"[n(qﬁp, &*)(4,(s) +p,(s)f(1)) | ds (24)

—a 1

where ¢,(s)=gq,/(q,+p; ¢*) and p,(s) =1~ g,(s). Since

1=(2aPy) " [ e7E

—m

exp{isizj}) s

it follows, using a well known identity for products, that

‘PN,,(’) —gy(1) = (2‘1TPN")41/_‘”“ e_im]:I(qj+pj e”)
X {]:[(qj(s) +pj(s)fj.(t)) - 1'11 eP,(C”—])E(YJ)} ds
= (2'1'rPN")—1f'"1r e—m‘I:I(‘Ij"'Pj eis)

X{ x [ﬁ (a:(s) +Pf(s>f:(t>Mkn <<>}

=1 =j+1
><[q,-<s)+p,<s>f,~(r)—ew“—wm]} as. (25)

To evaluate the absolute value of the difference in (2.5), the following lemma is needed.

Lemma 2.1,

lqj(s) +pj(s)fj(z) — P —DEX)

p,EY,(Y,—1) | 2P, lsin %s_|E(YJ.)
2(q;—p;) (q9,—p) e’ —1]

S,eil—llz

+ %(ij(Yj))z]" (2.6)
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Proof. First, write the left hand side of (2.6) as follows:

|2 ()[ () =1 = E(¥))(e" = D] + (p,(5) —p)(e" = DE(Y))

— (e VB — 1 — p (e~ 1) E(Y))) | (2.7)
Clearly,
p 2pi4; . .
() <g=5  Ip()=pl < g Isin i),
[e ]
|/ (1) —1—E(Y,)(e"-1)|= e*P{Y,=k}—-1—(e"-1) 3 kP{Yj=k}I
k=0 k=0
0 eikt 1
-1 — Y=k
<hle” “1|2EYJ(YJ‘_1)'
Finally,

S VED 1 e~ 1) E(,) | <4167 11 E(7)-

This proves the lemma. O

Set
N pE(Y, N[ pEY(Y -1
=g 2By [Py |
1 P, 1 q; — P;
N N
p;q
c=Xg=pE¥).  d=Epa,
J 1
Then we have:
Proposition 2.1.
|<pN"(z)—gN(t)[sae'e“—”A-{B|e“—1|B+y|e“—1|d—‘/2c} (2.8)

where a, B and vy are positive constants.

Proof. First, we have the following three inequalities:
@ @) +p () () =11+ (f,(1) =) p,(s)]

<1+ [e" 1| p(s)E(Y,) <exp{ pE(Y))|e"=1|/(q,=p)}.
(ii) lepk(e"—l)E(Yk) | < e Prle " =1 EMO/(q=pi)

-2 in’(s/2
K <e P;4q; sin(s/' ).

(i)  |g,+p e
This and (2.5) yield:
!(PN,,(I) —gzv(t)l

-1 W u _ so2 B : .
<(2nPy) e'° I'Af e s G/DILB el — 1|2+ Cle' — 1| |sin $s5]] ds.
—T
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Since
T 2d s , 3/2 T 24 sin? . -
f e~ 2d sin(s/2) ds < [%ﬂ] / d-12, j’ e 2d sin’(s/2) gip Isds< (1 —e 2d)/d,
0
and Py > k-d'/?, where k > 0 is a constant, the proposition follows. O

An important consequence of the proposition is the Poisson convergence of the sample sum, stated
formally in Corollary 2.1. Set (& = a(N) is assumed to be a bounded sequence)

_1 .
= mi —p)).
« 1<j<nN(q" 7))

Then clearly

N
A< azl‘.p,-E{Yj},
N N
B<aXpEY,(Y-1)+ max (pE(K)EpE(Y),
1 1<k<N 1
N
C< aXl:ij{Yj}.

In addition, since £{'p, = n and p; <0.5 it follows that d > 2n.

Corollary 2.1. If we set I, = INJ, P =Pn, and assume that as N = 00, n — o0,
N
max pN/E(Yj)—>0, ZPI\GE}C'()/J'_l)—)O
1

I</<N

and

N
Y pnE(Y) —A,
1

—DA

then @y (1) = g(t), where g(t) = e =D\ This implies that

f{%Y,JN,- fIN,=n} - 2(2)

where Z is a Poisson r.v. with E{Z}=X. 0O

3. Convergence to a normal distribution
The result of this section can be formulated as:

Proposition 3.1. Let {Y,;}T be independent real-valued r.v.s such that E{Y;} =0 and Var{Y;} =1, j=1,
2,..., independent of {1;}T. Then

Sy 5z
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where Z ~ N (0.1), or equivalently ¥ (1) > (), uniformly where
. N

exp| —— 3y,
vn T

Proof. The method of proof is the one used in the previous proposition. Write

¥, (t)=E

N
I, 21j=n}) and ¢(1)=e %2,
1

N

¥, (1) = (2wPN")‘1f" e_ix"l—l—l(qj-i-pj e“fj(#)) ds.

—_T
Then, we have

Yy (1) —o(1) = (2vPNn)_1f

et

[Eita, 5 e0)
[lﬁ(q (s) +p(s)f, (7)) - ll—v[ e“'Z/Z")P/} ds

1

= (2%P, )" f_ﬂ ‘”"[I:—l[( q,+p ¢ )]
BT non( 01, <o

/

*(9,)+p0)1( =) - ”’)} ds.

But
q;(s) +p;(s) 1("/;:) — e~/
P (5] 1)+ 0= emm)
¢ 2 2
= B ()] + (=) g +1 - A2p = emtrame
7l o)
9 (s) +Pk(s)fk(7t’7—) =‘1 +Pk(s)(fk(7t‘n—)_1){
Sexp{ I (‘/t_)—l‘} exp{qklikpko(%)},
and
g,+p; el < exp{ijqj sin® %s}
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From this, we obtain that

| Oy (1) —o(1)| < (ZﬂPNn)—lf" e~ (1 ;2 sin*(s/2)= (22 /2mEY (pilau~pi ) + o (1)
-

t2
X 0(1) + n

<d—l/z[o(l) +L2_

Vd 2n

which proves the assertion. O
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1

=0(1) + = -0
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